4 Xuelong Chen ${ }^{1,3}$, Zhongbo Su ${ }^{7}$
5 1. Key Laboratory of Tibetan Environment Changes and Land Surface
6 Processes, Institute of Tibetan Plateau Research, Chinese Academy of
7 Sciences, Chinese Academy of Sciences, Beijing, China
Long term variations of actual evapotranspiration over the Tibetan Plateau

Cunbo Han ${ }^{1,2}$, Yaoming Ma ${ }^{1,3,4,5}$, Binbin Wang ${ }^{1}$, Lei Zhong ${ }^{6}$, Weiqiang Ma ${ }^{1,3}$,
2. Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany
3. CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China
4. University of Chinese Academy of Sciences, Beijing, China
5. Lanzhou University, Lanzhou, China
6. Laboratory for Atmospheric Observation and Climate Environment Research, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
7. Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, The Netherlands

Correspondence to:

Prof. Dr. Yaoming Ma
Institute of Tibetan Plateau Research, Chinese Academy of Sciences
(ITPCAS)
16-3 Lincui Road, Chaoyang District, Beijing
100101, China

Tel: +86 01084097079
Email: ymma@itpcas.ac.cn

Abstract

Terrestrial actual evapotranspiration $\left(E T_{\mathrm{a}}\right)$ is a key parameter controlling the land-atmosphere interaction processes and the water cycle. However, the spatial distribution and temporal changes of $E T_{\mathrm{a}}$ over the Tibetan Plateau (TP) remain very uncertain. Here we estimate the multiyear (2001-2018) monthly $E T_{a}$ and its spatial distribution on the TP by a combination of meteorological data and satellite products. Validation against data from six eddy-covariance monitoring sites yielded a root mean square errors ranging from 9.3 to 14.5 $\mathrm{mm} \mathrm{mo}^{-1}$, and correlation coefficients exceeding 0.9 . The domain mean of annual $E T_{a}$ on the TP decreased slightly ($-1.45 \mathrm{~mm} \mathrm{yr}^{-1}, p<0.05$) from 2001 to 2018. The annual $E T_{\mathrm{a}}$ increased significantly at a rate of $2.62 \mathrm{~mm} \mathrm{yr}^{-1}(p<$ 0.05) in the eastern sector of the TP (Ion > $90^{\circ} \mathrm{E}$), but decreased significantly at a rate of $-5.52 \mathrm{~mm} \mathrm{yr}^{-1}(p<0.05)$ in the western sector of the TP (Ion $<90^{\circ}$ E). In addition, the decreases in annual $E T_{\mathrm{a}}$ were pronounced in spring and summer seasons, while almost no trends were detected in the autumn and winter seasons. The mean annual $E T_{\text {a }}$ during 2001-2018 and over the whole TP was $496 \pm 23 \mathrm{~mm}$. Thus, the total evapotranspiration from the terrestrial surface of the TP was $1238.3 \pm 57.6 \mathrm{~km}^{3} \mathrm{yr}^{-1}$. The estimated $E T_{\mathrm{a}}$ product presented in this study is useful for an improved understanding of changes in energy and water cycle on the TP. The dataset is freely available at the Science Data Bank (http://www.dx.doi.org/10.11922/sciencedb.t00000.00010, (Han et al. 2020)) and at the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/en/data/5a0d2e28-ebc6-4ea4-8ce4-a7f2897c8ee6/).

Key words: Actual evapotranspiration; SEBS; Tibetan Plateau; Trend.

Key points:

- The SEBS-estimated monthly $E T_{\text {a }}$ during 2001-2018 shows acceptable accuracy validated against 6 flux towers.
- Annual $E T_{a}$ over the entire TP and in the western TP decrease significantly, while it increases in the east TP.
- Decrease of annual $E T_{\mathrm{a}}$ is pronounced in spring and summer, while almost no trends are detected in autumn and winter.

1 Introduction

As the birthplace of Asia's major rivers, the Tibetan Plateau (TP), famous as the "Water Tower of Asia", is essential to the Asian energy and water cycles (Immerzeel et al. 2010, Yao et al. 2012). Along with increasing air temperature, evidence from the changes of precipitation, runoff, and soil moisture indicates that the hydrological cycle of the TP has been intensified during the past century (Yang et al. 2014). Contributing around two-thirds of global terrestrial precipitation, evapotranspiration $(E T)$ is a crucial component that affects the exchange of water and energy between the land surface and the atmosphere (Oki and Kanae 2006, Fisher et al. 2017). $E T$ is also an essential factor modulating regional and global weather and climate. As the only connecting component between the energy budget and the water cycle in the terrestrial ecosystems (Xu and Singh 2005), $E T$ and variations of $E T$ over the TP have received increasing attention worldwide (Xu and Singh 2005, Li et al. 2014, Zhang et al. 2018, Yao et al. 2019, Wang et al. 2020). Total evaporation from large lakes of the TP has been quantitatively estimated recently (Wang et al. 2020), however, the terrestrial ET on the TP and its spatial and temporal changes remain very uncertain.

Many studies have tried to evaluate $E T$ s temporal and spatial variability across the TP using various methods. The pan evaporation ($E_{\text {pan }}$), that represents the amount of water evaporated from an open circular pan, is the most popular observational data source of $E T$. Long time series of $E_{\text {pan }}$ are often available with good comparability among various regional measurements. Thus, it has been widely used in various disciplines, e.g., meteorology, hydrology, and ecology. Several studies have revealed the trend of $E_{\text {pan }}$ on the TP (Zhang et al. 2007, Liu et al. 2011, Shi et al. 2017, Zhang et al. 2018, Yao et al. 2019). Although $E_{\text {pan }}$ and potential $E T$ suggest the long-
term variability of $E T$ according to contrasting trends between $E_{\text {pan }}$ and actual $E T\left(E T_{\mathrm{a}}\right)$ (Zhang et al. 2007), these measures cannot precisely depict the spatial pattern of trends in $E T_{a}$. Recently, several studies applied revised models, which are based on the complementary relationship (CR) of $E T$, to estimate $E T_{\mathrm{a}}$ on the TP (Zhang et al. 2018, Ma et al. 2019, Wang et al. 2020). Employing only routine meteorological observations without requiring any vegetation and soil information is the most significant advantage of $C R$ models (Szilagyi et al. 2017). However, numerous assumptions and requirements of validations of key parameters limit the application and performance of CR models over different climate conditions. The application of eddy-covariance (EC) technologies in the past decade has dramatically advanced our understanding of the terrestrial energy balance and $E T_{\mathrm{a}}$ over various ecosystems across the TP. However, the fetch of the EC observation is on the order of hundreds of meters, thus impeding the ability to capture the plateau-scale variations of $E T_{\mathrm{a}}$. Therefore, finding an effective way to advance the estimation of $E T_{a}$ on the TP is of great importance.

Satellite remote sensing (RS) provides temporally frequent and spatially contiguous measurements of land surface characteristics that affect $E T$, for example, land surface temperature, albedo, vegetation index. Satellite RS also offers the opportunity to retrieve $E T$ over a heterogeneous surface (Zhang et al. 2010). Multiple RS-based algorithms have been proposed. Among these algorithms, the surface energy balance system (SEBS) proposed by Su (2002) has been widely applied to retrieve land surface turbulent fluxes on the TP (Chen et al. 2013, Ma et al. 2014, Han et al. 2016, Han et al. 2017, Zou et al. 2018, Zhong et al. 2019). Chen et al. (2013) improved the roughness length parameterization scheme for heat transfer in SEBS to expand its modeling applicability over bare ground, sparse canopy,
dense canopy, and snow surfaces in the TP. An algorithm for effective aerodynamic roughness length had been introduced into the SEBS model to parameterize subgrid-scale topographical form drag (Han et al. 2015, Han et al. 2017). This scheme improved the skill of the SEBS model in estimating the surface energy budget over mountainous regions of the TP. A recent advance by Chen et al. (2019) optimized five critical parameters in SEBS using observations collected from 27 sites globally, including 6 sites on the TP, and suggested that the overestimation of the global $E T$ was substantially improved with the use of optimal parameters.

While the spatial and temporal pattern of the $E T_{a}$ in the TP had been investigated in many studies (Zhang et al. 2007, Zhang et al. 2018, Wang et al. 2020), considerable inconsistencies for both trends and magnitudes of $E T_{\mathrm{a}}$ exist due to uncertainties in forcing and parameters used by various models. Thus, in this study, with full consideration of the recent developments in the SEBS model over the TP, we aim to (1) develop an 18-year (2001-2018) ETa product of the TP, along with independent validations against EC observations; (2) quantify the spatiotemporal variability of the $E T_{a}$ in the TP, and (3) uncover the main factors dominating the changes in $E T_{\mathrm{a}}$, using the estimated product.

2 Methodology and data

2.1 Model description

The SEBS model (Su 2002) was used to derive land surface energy flux components in the present study. The remote-sensed land surface energy balance equation is given by

$$
\begin{equation*}
R_{n}=H+L E+G_{0} \tag{1}
\end{equation*}
$$

R_{n} is the net radiation flux $\left(\mathrm{W} \mathrm{m}^{-2}\right), H$ is the sensible heat flux $\left(\mathrm{W} \mathrm{m}^{-2}\right), L E$ is the latent heat flux $\left(\mathrm{W} \mathrm{m}^{-2}\right)$, and G_{0} is the ground heat flux $\left(\mathrm{W} \mathrm{m}^{-2}\right)$.

The land surface net radiation flux was computed as

$$
\begin{equation*}
R_{n}=(1-\alpha) \times S W D+L W D-\varepsilon \times \sigma \times T_{s}^{4} \tag{2}
\end{equation*}
$$

where α is the land surface albedo derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) products. Downward shortwave (SWD) and longwave (LWD) radiation were obtained from the China Meteorological Forcing Dataset (CMFD). Land surface temperature (T_{s}) and emissivity (ε) values were also obtained from MODIS products.

In vegetated areas the soil heat flux, G_{0}, was calculated from the net radiation flux and vegetation cover

$$
\begin{equation*}
G_{0}=R_{n} \times\left(r_{c} \times f_{c}+r_{s} \times\left(1-f_{c}\right)\right) \tag{3}
\end{equation*}
$$

r_{s} and r_{c} are ratios of ground heat flux and net radiation for surfaces with bare soil and full vegetation, respectively. Fractional vegetation cover $\left(f_{c}\right)$ was derived from the normalized difference vegetation index (NDVI). Over water surfaces (NDVI <0 and $\alpha<0.47$), $G_{0}=0.5 R_{\mathrm{n}}$ was used (Gao et al. 2011, Chen et al. 2013). On glaciers, G_{0} is negligible (Yang et al. 2011) and $G_{0}=$ $0.05 R_{\mathrm{n}}$.

In the atmospheric surface layer, sensible heat flux and friction velocity were calculated based on the Monin-Obukhov similarity (Stull 1988),

$$
\begin{gather*}
U=\frac{u_{*}}{\kappa}\left[\ln \left(\frac{z-d_{0}}{z_{0 m}^{e f f}}\right)-\psi_{m}\left(\frac{z-d_{0}}{L}\right)+\psi_{m}\left(\frac{z_{0 m}^{e f f}}{L}\right)\right] \tag{4}\\
\theta_{0}-\theta_{a}=\frac{H}{\kappa u_{*} \rho C_{p}}\left[\ln \left(\frac{z-d_{0}}{z_{0 h}^{e f f}}\right)-\psi_{h}\left(\frac{z-d_{0}}{L}\right)+\psi_{h}\left(\frac{z_{0 h}^{e f f}}{L}\right)\right] \tag{5}\\
L=\frac{\rho C_{p} u_{*}^{3} \theta_{v}}{\kappa g H} . \tag{6}
\end{gather*}
$$

U is the horizontal wind velocity at a reference height $z(\mathrm{~m})$ above the ground surface, θ_{0} is the potential temperature at the land surface $(K), \theta_{a}$ is the potential temperature (K) at the reference height z, d_{0} is the zero-plane displacement height (m), ρ is the air density $\left(\mathrm{kg} \mathrm{m}^{-3}\right), C_{p}$ is the specific heat for moist air $\left(\mathrm{J} \mathrm{kg}^{-1}{ }^{\circ} \mathrm{C}^{-1}\right), \kappa=0.4$ is the von Kármán's constant, u^{*} is the friction velocity, L is the Monin-Obukhov length (m), θ_{v} is the potential virtual temperature (K) at the reference height z, ψ_{m} and ψ_{h} are the stability correction functions for momentum and sensible heat transfer respectively, and g is the gravity acceleration $\left(\mathrm{m} \mathrm{s}^{-2}\right)$. To account for the form drag caused by subgrid-scale topographical obstacles, effective roughness lengths for momentum $\left(z_{0 m}^{\text {eff }}, m\right)$ and sensible heat $\left(z_{0 h}^{\text {eff }}, m\right)$ transfer were introduced into the SEBS model by Han et al. (2017). These modifications are parameterized as follows (Grant and Mason 1990, Han et al. 2015),

$$
\begin{gather*}
\ln ^{2}\left(h / 2 z_{0 m}^{e f f}\right)=\frac{\kappa^{2}}{0.5 D \lambda+\kappa^{2} / \ln ^{2}\left(h / 2 z_{0 m}\right)} \tag{7}\\
\ln \left(h / 2 z_{0 h}^{e f f}+1\right)=\ln \left(h / 2 z_{0 h}+1\right) \frac{\ln \left(h / 2 z_{0 m}+1\right)}{\ln \left(h / z_{0 m}^{e f f}+1\right)} \tag{8}
\end{gather*}
$$

where λ is the average density of the subgrid-scale roughness elements calculated from digital elevation models, D is the form drag coefficient and $D=0.4$ is used for the mountainous areas of the TP as suggested by Han et al. (2015), $Z_{0 m}$ and $Z_{0 h}$ are the local-scale roughness lengths for momentum (m) and heat transfer (m), respectively. Detailed calculations can be found in Su (2002). A revised algorithm for $Z_{0 h}$ developed by Chen et al. (2013) was applied as this algorithm outperforms the original scheme of the SEBS model on the TP.

To constrain the actual evapotranspiration, an evaporative fraction was applied in the SEBS model. Under the dry-limit condition, the evaporation becomes zero due to the limited supply of available soil moisture, while water vapor evaporates at the potential rate under the wet-limit condition (Su 2002).

Finally, daily $E T_{\mathrm{a}}$ was calculated using the evaporative fraction as a residual of the surface energy budget equation while accounting for dry and wet limits. Details are available in Su (2002).

2.2 Data

In-situ observations, satellite-based products, and meteorological forcing data were used in this study to estimate monthly $E T_{a}$ over the TP area. The CMFD, that was developed based on the released China Meteorological Administration (CMA) data (He et al. 2020), was used as model input. The CMFD covers the whole landmass of China at a spatial resolution of 0.1° and a temporal resolution of three hours. The dataset was established through the fusion of in-situ observations, remote sensing products, and reanalysis datasets. In particular, the dataset benefits from the merging of the observations at about 700 CMA's weather stations, and by using the Global Energy and Water Cycle Experiment - Surface Radiation Budget (GEWEXSRB) shortwave radiation dataset (Pinker and Laszlo 1992). The GEWEXSRB data has not been used in any other reanalysis dataset. In addition, independent datasets observed in western China where weather stations are scarce were used to evaluate the CMFD. This includes data collected through the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (Li et al. 2013) and the Coordinated Enhanced Observing Period (CEOP) AsiaAustralia Monsoon Project (CAMP) (Ma et al. 2003). CMFD dataset is suitable for our study due to its continuous-time coverage and consistent quality. Detailed information for the CMFD dataset is listed in Table 1.

In-situ EC data observed at six flux stations on the TP were used to validate model results. Locations of the six observation sites are illustrated in Figure 1 and detailed descriptions for these six sites are shown in Table 2. The
instrumental setup at each site consists of: an EC system comprising a sonic anemometer (CSAT3, Campbell Scientific Inc) and an open-path gas analyzer (LI-7500, Li-COR); a four-component radiation flux system (CNR-1, Kipp \& Zonen), installed at a height of 1.5 m ; a soil heat flux plate (Hukseflux, HFP01), buried in the soil to a depth of 0.1 m ; soil moisture and temperature probes, buried at a depth of $0.05,0.10$, and 0.15 m , respectively (Han et al. 2017). The EC data were processed with the EC software package TK3 (Mauder and Foken 2015). The main post-processing procedures were as follows: spike detection, coordinate rotation, spectral loss correction, frequency response corrections (Moore 1986), and corrections for density fluctuations (Webb et al. 1980). The ground heat flux was obtained by summing the flux value observed by the heat flux plate and the energy storage in the layer above the heat flux plate (Han et al. 2016). Monthly EC data, which are used for validation, were generated from half-hourly variables. A more comprehensive dataset including the EC data used in this work has been published and is freely available (Ma et al. 2020).

2.3 Model evaluation metrics and data analysis methods

The model performance was assessed using the Pearson correlation coefficient (R), the root mean square error (RMSE), and the mean bias (MB) between the estimated and observed monthly $E T_{a}$ at the six stations on the TP.

The least-square regression technique was used to detect the long-term linear annual trends in $E T_{\mathrm{a}}$ values. The linear model to simulate $E T_{\mathrm{a}}$ values $\left(Y_{\mathrm{t}}\right)$ against time (t) is

$$
\begin{equation*}
Y_{t}=Y_{0}+b t+\varepsilon_{t} \tag{9}
\end{equation*}
$$

The Student's t-test, having an n-2 degree of freedom (n is the number of samples), was used to evaluated the statistical significance of the linear trends, and only tests with a p-value less than 0.05 were selected as having passed the significance test.

3 Results and discussion

3.1 Validation against flux tower observations

The SEBS-estimated $E T_{\mathrm{a}}$ was validated against EC observations at the six flux stations on the TP at a monthly scale (Figure 2). The SEBS model is capable of capturing both the magnitude and phase of the monthly $E T_{a}$ signal at all the six stations. The correlation coefficients are all larger than 0.9 and have passed the significance test at the $p=0.01$ level. RMSE values range from 9.3 to $14.5 \mathrm{~mm} \mathrm{mo}^{-1}$ with the minimum at the BJ station and the maximum at the SETORS station. The MB values are all negative except at the NADORS station, which means the SEBS model slightly underestimated $E T_{\mathrm{a}}$ values on the TP.

Specifically, the SEBS model performed particularly well at the spare grass stations (NADORS and MAWORS) and at the short grass sites (BJ and NAMORS). At the high grass site (SETORS) and the gravel site (QOMS), the SEBS model is capable of reproducing the EC-observed monthly $E T_{a}$ with RMSE values of 14.5 and $13.2 \mathrm{~mm} \mathrm{mo}^{-1}$, respectively. In addition, the underestimates of $E T_{\mathrm{a}}$ by SEBS are mostly in the dry season, when the canopy is withered. The validation at the site-scale indicates that the SEBS model used in this work can be applied to a wide range of ecosystems over the TP.

3.2 Spatial distribution

There was a clear spatial pattern to the multiyear (2001-2018) mean annual $E T_{\mathrm{a}}$ (Figure 3). In general, the SEBS-estimated $E T_{\mathrm{a}}$ decreases from the southeast to the northwest of the TP, with the maximum value above 1200 mm in the southeastern Tibet and Hengduan Mountains and the minimum value less than 100 mm in the northwestern edge of the TP. In the central TP, where there are several lakes, $E T_{\text {a }}$ was typically from 500 to $1000 \mathrm{~mm} . E T_{\mathrm{a}}$ was lower than 200 mm over the high, snow- and ice-bound, mountainous areas. For example, over the northern slopes of the Himalaya, Nyenchen Tanglha Mountains, and the eastern section of the Tanggula Mountains. The reason is that these snow- and ice-bound mountainous areas have a higher ability to reflect downward shortwave radiation and hence have less available energy to evaporate. On the whole, the domain averaged multiyear mean annual $E T_{\mathrm{a}}$ over the TP is $496 \pm 23 \mathrm{~mm}$. The total amount of water evapotranspirated from the terrestrial surface of the TP are around $1238.3 \pm 57.6 \mathrm{~km}^{3} \mathrm{yr}^{-1}$, considering the area of the TP to be $2.5 \times 10^{6} \mathrm{~km}^{2}$.

Figure 4 shows the multi-year average spring (Marth, April, and May), summer (June, July, and August), autumn (September, October, and November), and winter (December, January, and February) $E T_{\mathrm{a}}$ on the TP. Generally, the distribution pattern of seasonal $E T_{a}$ was comparable with that of the annual $E T_{\text {a }}$. Both seasonal and annual $E T_{\text {a }}$ show a decreasing trend from the southeastern TP to the northwestern TP. Note that the distribution pattern almost faded out in winter season owing to a minimum in available energy and precipitation (Figure 4d). The $E T_{\mathrm{a}}$ in spring is higher than that in autumn, except for some high mountainous areas (e.g.: mountain ranges of Himalaya and Hengduan mountains). The spring $E T_{a}$ ranges from 50 mm to 450 mm , while autumn $E T_{\mathrm{a}}$ ranges from 50 mm to 250 mm . In summer, the $E T_{\mathrm{a}}$ is
larger than 250 mm in most of the TP, while the $E T_{\mathrm{a}}$ is still below 100 mm in large areas of the northwestern TP. The multiyear seasonal $E T_{\text {a }}$ averaged over the whole TP is $140 \pm 10 \mathrm{~mm}, 256 \pm 12 \mathrm{~mm}, 84 \pm 5 \mathrm{~mm}$, and $34 \pm 4 \mathrm{~mm}$, for spring, summer, autumn, and winter, respectively.

3.3 Trend analysis

The trend of annual $E T_{\text {a }}$ during 2001-2018 is shown in Figure 5. Overall, an increasing trend of SEBS-simulated $E T_{a}$ is dominant in the eastern TP (lon > $90^{\circ} \mathrm{E}$) while a decreasing trend is dominant in the western TP (Ion $<90^{\circ} \mathrm{E}$). The trends pass the t-test $(p<0.05)$ in most part of the areas. The decreasing trend in the western TP is pronounced and passes the t-test $(p<0.05)$. This trend is larger than $-7.5 \mathrm{~mm} \mathrm{yr}^{-1}$ in most parts of the area and even larger than $-10 \mathrm{~mm} \mathrm{yr}^{-1}$ in a few parts. In the eastern TP, the increasing trend is mostly between 5 and $10 \mathrm{~mm} \mathrm{yr}^{-1}$ and passes the t-test ($p<0.05$). The $E T_{\text {a }}$ trend tends to be greater along the marginal region of the northern, eastern, and southeastern TP. Along the marginal region of the southwestern TP and in the western section of Himalaya Mountains this trend weakens.

The trends of seasonal $E T_{a}$ between 2001 and 2018 are spatially heterogeneous over the TP (Figure 6). Decreasing trends in spring and summer are generally at a rate between -2.5 and $-7.5 \mathrm{~mm} \mathrm{yr}^{-1}$, and increasing trends are generally at a rate below $5.0 \mathrm{~mm} \mathrm{yr}^{-1}$ and $7.5 \mathrm{~mm} \mathrm{yr}^{-1}$ in spring and summer, respectively. Areas showing decreasing $E T_{\mathrm{a}}$ tend to become larger in autumn and winter seasons. Both the decreasing and increasing trends are subdued in autumn and winter compared with that in spring and summer seasons. Decreasing rates of $E T_{\mathrm{a}}$ in autumn and winter are generally below $2.5 \mathrm{~mm} \mathrm{yr}^{-1}$, and only a few areas have a rate larger than $-2.5 \mathrm{~mm} \mathrm{yr}^{-1}$.

Due to the contrast in the trends in the eastern and western halves of the TP, we divided the TP into two regions: the eastern TP (lon $>90^{\circ} \mathrm{E}$) and the western TP (Ion < $90^{\circ} \mathrm{E}$). Trends of the $E T_{a}$ anomaly averaged over the entire TP, the western TP, and the eastern TP are shown in Figure 7a. The domain means of $E T_{\mathrm{a}}$ on the TP as a whole, and in the western TP decreased at rates of $-1.45 \mathrm{~mm} \mathrm{yr}^{-1}$ and $-5.52 \mathrm{~mm} \mathrm{yr}^{-1}$, respectively. However, the $E T_{\mathrm{a}}$ in the eastern TP increased at a rate of $2.62 \mathrm{~mm} \mathrm{yr}^{-1}$. The decreasing rate of $E T_{\mathrm{a}}$ in the entire TP is influenced mainly by the significant decrease of $E T_{a}$ in the western TP. Seasonally, the rates of change of $E T_{a}$ over the whole TP are $0.82 \mathrm{~mm} \mathrm{yr}^{-1}(p<0.05)$ and $-0.79 \mathrm{~mm} \mathrm{yr}^{-1}(p<0.05)$ in spring and summer, respectively (Figure 7b). However, in autumn and winter the $E T_{a}$ changes at a rate of $0.10 \mathrm{~mm} \mathrm{yr}^{-1}$ and $0.06 \mathrm{~mm} \mathrm{yr}^{-1}$, respectively, and do not pass the t-test $(p<0.05) . E T_{a}$ in spring and summer seasons account for 75.7% of the annual $E T_{\mathrm{a}}$. The variation in amplitude and changing rates in these two seasons are much larger than in the other seasons. Moreover, spatial distributions of spring and summer $E T_{a}$ trends are close to that of the annual $E T_{a}$ trend (Figure 6). Thus, changes of $E T_{a}$ in the spring and summer dominate the variations of $E T_{\mathrm{a}}$ in the whole year.

The decrease of $E T_{\text {a }}$ over the whole TP and in the western TP during 20012018 can be explained by the decrease of R_{n} in the same time period (Figure 8a). From 2001 to 2012, $E T_{\text {a }}$ averaged over the entire TP increased slightly and then decreased dramatically from 2012, reaching a minimum in 2014. The significant decrease in $E T_{a}$ between 2012 and 2014 was due to the rapid decline of the R_{n} (Figure 8a). In the eastern TP, $E T_{\mathrm{a}}$ increased during 20012018, while R_{n} decreased in the same period. Thus, R_{n} was not the dominant factor controlling the annual variations of $E T_{\mathrm{a}}$. However, the increasing trends of both precipitation and air temperature can explain the increase of $E T_{\mathrm{a}}$ in the
eastern TP during the period 2001-2018 (Figure 8b and Figure 8c). The increasing precipitation increased the water resource available for $E T_{a}$. Moreover, the increasing air temperature accelerated the melting of permafrost and glaciers on the TP. Hence, the melting water replenished the ecosystem and increased the $E T_{a}$ of the eastern TP.

Although the domain-averaged trend in $E T_{\text {a }}$ has been decreasing across the entire TP from 2001 to 2018, $E T_{a}$ values in some areas have increased. Moreover, the changing rates also depend on the time series of $E T_{\text {a }}$. For example, the $E T_{\text {a }}$ increased slightly from 2001 to 2012, while decreased from 2001 to 2018. This demonstrates the necessity to utilize high-spatial resolution datasets and long time series to investigate the trends in $E T_{\mathrm{a}}$ over the TP.

4 Summary and conclusions

The SEBS-estimated $E T_{\mathrm{a}}$ is at a resolution of around 10 km , while the footprint of $E C$ observed $E T_{a}$ values ranges from a few dozen meters to a few hundreds of meters. SEBS-estimated $E T_{\mathrm{a}}$ compares very well with observations at the six flux towers, showing low RMSE and MB values. These estimates were able to capture annual and seasonal variations in $E T_{\mathrm{a}}$, despite these two datasets being mismatched in their spatial representation.

Heterogeneous land surface characteristics and nonlinear changes in atmospheric conditions resulted in heterogeneities in spatial distributions of $E T_{\mathrm{a}}$ and changes in $E T_{\mathrm{a}}$. The SEBS-estimated multiyear (2001-2018) mean annual $E T_{\mathrm{a}}$ on the TP was $515 \pm 22 \mathrm{~mm}$, resulting in approximately $1287.5 \pm 55.0 \mathrm{~km}^{3} \mathrm{yr}^{-1}$ of total water evapotranspiration from the terrestrial surface. Annual $E T_{\text {a }}$ generally decreased from the southeast to the northwest
of the TP. The maximum was over 1200 mm , in the southeastern Tibet and Hengduan Mountains, while the minimum was less than 100 mm in the northwest marginal area of the TP. Moreover, $E T_{\text {a }}$ was typically lower than 200 mm over snow- and ice-bound mountainous areas, as there was limited available energy to evaporate the water.

Averaged over the entire TP, annual $E T_{a}$ increased slightly from 2001 to 2012, but decreased significantly after 2012 and reached a minimum in 2014. Generally, there was a slight decreasing trend in the domain mean annual $E T_{\text {a }}$ on the TP at the rate of $-1.45 \mathrm{~mm} \mathrm{yr}^{-1}(p<0.05)$ from 2001 to 2018 . However, trends of annual $E T_{\mathrm{a}}$ were opposite in the western and eastern TP. The annual $E T_{\text {a }}$ decreased significantly in the western TP at a rate of $-5.52 \mathrm{~mm} \mathrm{yr}^{-}$ ${ }^{1}(p<0.05)$ from 2001 to 2018, while annual $E T_{a}$ in the eastern TP increased at a rate of $2.62 \mathrm{~mm} \mathrm{yr}^{-1}(p<0.05)$ in the same period.

The spatial distributions of seasonal $E T_{\mathrm{a}}$ trends were also noticeably heterogeneous during 2001-2018. The spatial patterns of rate of change of $E T_{\mathrm{a}}$ in spring and summer were similar to the annual changes in $E T_{\mathrm{a}}$. Finally, $E T_{\mathrm{a}}$ decreased as well in the spring and summer season but at slower rates compared with the annual $E T_{\mathrm{a}}$, however, only very weak trends were found in the autumn and winter seasons.

5 Data availability

The dataset presented and analyzed in this article has been released and is available for free download from the Science Data Bank (http://www.dx.doi.org/10.11922/sciencedb.t00000.00010, (Han et al. 2020)) and from the National Tibetan Plateau Data Center
(https://data.tpdc.ac.cn/en/data/5a0d2e28-ebc6-4ea4-8ce4-a7f2897c8ee6/).
The dataset is published under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

Acknowledgments

This study was funded by the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (grant no. 2019QZKK0103), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20060101), the National Natural Science Foundation of China (91837208, 41705005, and 41830650). The CMFD data were obtained from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769965612652c49/). MODIS data were obtained from the NASA Land Processes Distributed Active Archive Center (https://lpdaac.usgs.gov/). Global 1 km forest canopy height data were obtained from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1271). The authors would like to thank all colleagues working at the observational stations on the TP for their maintenance of the instruments.

References

Chen, X., Z. Su, Y. Ma and E. M. Middleton. 2019. Optimization of a remote sensing energy balance method over different canopy applied at global scale. Agricultural and Forest Meteorology 279: 107633-107633.
Chen, X., Z. Su, Y. Ma, K. Yang and B. Wang. 2013. Estimation of surface energy fluxes under complex terrain of Mt. Qomolangma over the Tibetan Plateau. Hydrol. Earth Syst. Sci. 17(4): 1607-1618.
Chen, X., Z. Su, Y. Ma, K. Yang, J. Wen and Y. Zhang. 2013. An Improvement of Roughness Height Parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau. Journal of Applied Meteorology and Climatology 52(3): 607-622.
Fisher, J. B., F. Melton, E. Middleton, C. Hain, M. Anderson, R. Allen, M. F. McCabe, S. Hook, D. Baldocchi, P. A. Townsend, A. Kilic, K. Tu, D. D. Miralles, J. Perret, J.-P. Lagouarde, D. Waliser, A. J. Purdy, A. French, D. Schimel, J. S. Famiglietti, G. Stephens and E. F. Wood. 2017. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resources Research 53(4): 2618-2626.
Gao, Z. Q., C. S. Liu, W. Gao and N. B. Chang. 2011. A coupled remote sensing and the Surface Energy Balance with Topography Algorithm (SEBTA) to estimate actual evapotranspiration over heterogeneous terrain. Hydrol. Earth Syst. Sci. 15(1): 119-139.
Grant, A. L. M. and P. J. Mason. 1990. Observations of boundary-layer structure over complex terrain. Quarterly Journal of the Royal Meteorological Society 116(491): 159-186.
Han, C., Y. Ma, X. Chen and Z. Su. 2016. Estimates of land surface heat fluxes of the Mt. Everest region over the Tibetan Plateau utilizing ASTER data. Atmospheric Research 168: 180-190.
Han, C., Y. Ma, X. Chen and Z. Su. 2017. Trends of land surface heat fluxes on the Tibetan Plateau from 2001 to 2012. International Journal of Climatology 37(14): 4757-4767.
Han, C., Y. Ma, Z. Su, X. Chen, L. Zhang, M. Li and F. Sun. 2015. Estimates of effective aerodynamic roughness length over mountainous areas of the Tibetan Plateau. Quarterly Journal of the Royal Meteorological Society 141(689): 1457-1465.
Han, C., Y. Ma, B. Wang, L. Zhong, W. Ma, X. Chen and Z. Su. 2020. The estimated actual evapotranspiration over the Tibetan Plateau from 2001 to 2018. V1. Science Data Bank. http://www.dx.doi.org/10.11922/sciencedb.t00000.00010.
He, J., K. Yang, W. Tang, H. Lu, J. Qin, Y. Chen and X. Li. 2020. The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data 7(1): 25-25.
Immerzeel, W. W., L. P. H. van Beek and M. F. P. Bierkens. 2010. Climate Change Will Affect the Asian Water Towers. Science 328(5984): 1382 LP-1385.
Li, X., G. Cheng, S. Liu, Q. Xiao, M. Ma, R. Jin, T. Che, Q. Liu, W. Wang, Y. Qi, J. Wen, H. Li, G. Zhu, J. Guo, Y. Ran, S. Wang, Z. Zhu, J. Zhou, X. Hu and Z. Xu. 2013. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bulletin of the American Meteorological Society 94(8): 1145-1160.
Li, X., L. Wang, D. Chen, K. Yang and A. Wang. 2014. Seasonal evapotranspiration changes (19832006) of four large basins on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres 119(23): 13,13-79,95.
Liu, X., H. Zheng, M. Zhang and C. Liu. 2011. Identification of dominant climate factor for pan
evaporation trend in the Tibetan Plateau. Journal of Geographical Sciences 21(4): 594-608.
Ma, N., J. Szilagyi, Y. Zhang and W. Liu. 2019. Complementary-Relationship-Based Modeling of Terrestrial Evapotranspiration Across China During 1982-2012: Validations and Spatiotemporal Analyses. Journal of Geophysical Research: Atmospheres 124(8): 4326-4351.
Ma, W., Y. Ma and H. Ishikawa. 2014. Evaluation of the SEBS for upscaling the evapotranspiration based on in-situ observations over the Tibetan Plateau. Atmospheric Research 138: 91-97.
Ma, Y., Z. Hu, Z. Xie, W. Ma, B. Wang, X. Chen, M. Li, L. Zhong, F. Sun, L. Gu, C. Han, L. Zhang, X. Liu, Z. Ding, G. Sun, S. Wang, Y. Wang and Z. Wang. 2020. A long-term (2005-2016) dataset of hourly integrated land-atmosphere interaction observations on the Tibetan Plateau. Earth Syst. Sci. Data 12(4): 2937-2957.
Ma, Y., Z. Su, T. Koike, T. Yao, H. Ishikawa, K. i. Ueno and M. Menenti. 2003. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau—from GAME/Tibet to CAMP/Tibet. Physics and Chemistry of the Earth, Parts A/B/C 28(1): 63-74.
Mauder, M. and T. Foken. 2015. Eddy-Covariance Software TK3.
Moore, C. J. 1986. Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology 37(1): 17-35.
Oki, T. and S. Kanae. 2006. Global Hydrological Cycles and World Water Resources. Science 313(5790): 1068 LP-1072.
Pinker, R. T. and I. Laszlo. 1992. Modeling Surface Solar Irradiance for Satellite Applications on a Global Scale. Journal of Applied Meteorology 31(2): 194-211.
Shi, H., T. Li and G. Wang. 2017. Temporal and spatial variations of potential evaporation and the driving mechanism over Tibet during 1961-2001. Hydrological Sciences Journal 62(9): 1469-1482.
Stull, R. B. (1988). An introduction to boundary layer meteorology. Dordrecht, Kluwer Academic Publishers.
Su, Z. 2002. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 6(1): 85-100.
Szilagyi, J., R. Crago and R. Qualls. 2017. A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology. Journal of Geophysical Research: Atmospheres 122(1): 264-278.
Wang, B., Y. Ma, Z. Su, Y. Wang and W. Ma. 2020. Quantifying the evaporation amounts of 75 highelevation large dimictic lakes on the Tibetan Plateau. Science Advances 6(26): eaay8558.
Wang, G., S. Lin, Z. Hu, Y. Lu, X. Sun and K. Huang. 2020. Improving Actual Evapotranspiration Estimation Integrating Energy Consumption for Ice Phase Change Across the Tibetan Plateau. Journal of Geophysical Research: Atmospheres 125(3): e2019JD031799-e032019JD031799.
Webb, E. K., G. I. Pearman and R. Leuning. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106(447): 85-100.
Xu, C. Y. and V. P. Singh. 2005. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. Journal of Hydrology 308(1): 105-121.
Yang, K., H. Wu, J. Qin, C. Lin, W. Tang and Y. Chen. 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global and Planetary Change 112:

79-91.
Yang, W., X. Guo, T. Yao, K. Yang, L. Zhao, S. Li and M. Zhu. 2011. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier. Journal of Geophysical Research: Atmospheres 116(D14).
Yao, T., H. Lu, W. Feng and Q. Yu. 2019. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century. Scientific Reports 9(1): 20181-20181.
Yao, T., L. Thompson, W. Yang, W. Yu, Y. Gao, X. Guo, X. Yang, K. Duan, H. Zhao, B. Xu, J. Pu, A. Lu, Y. Xiang, D. B. Kattel and D. Joswiak. 2012. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2(9): 663-667.
Zhang, C., F. Liu and Y. Shen. 2018. Attribution analysis of changing pan evaporation in the QinghaiTibetan Plateau, China. International Journal of Climatology 38(S1): e1032-e1043.
Zhang, K., J. S. Kimball, R. R. Nemani and S. W. Running. 2010. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resources Research 46(9).
Zhang, T., M. Gebremichael, X. Meng, J. Wen, M. Iqbal, D. Jia, Y. Yu and Z. Li. 2018. Climate-related trends of actual evapotranspiration over the Tibetan Plateau (1961-2010). International Journal of Climatology 38(S1): e48-e56.
Zhang, Y., C. Liu, Y. Tang and Y. Yang. 2007. Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. Journal of Geophysical Research: Atmospheres 112(D12).
Zhong, L., Y. Ma, Z. Hu, Y. Fu, Y. Hu, X. Wang, M. Cheng and N. Ge. 2019. Estimation of hourly land surface heat fluxes over the Tibetan Plateau by the combined use of geostationary and polar-orbiting satellites. Atmos. Chem. Phys. 19(8): 5529-5541.
Zou, M., L. Zhong, Y. Ma, Y. Hu, Z. Huang, K. Xu and L. Feng. 2018. Comparison of Two SatelliteBased Evapotranspiration Models of the Nagqu River Basin of the Tibetan Plateau. Journal of Geophysical Research: Atmospheres 123(8): 3961-3975.
https://doi.org/10.5194/essd-2020-323
Preprint. Discussion started: 11 January 2021
(C) Author(s) 2021. CC BY 4.0 License.

(c) ${ }^{(1)}$

List of tables

549 Table 1: Input datasets used in this study 22
550 Table 2: Station information. 23

554 Table 1: Input datasets used in this study.

Variables	Data source	Availability	Temporal resolution	Spatial resolution
Downward Shortwave	CMFD	$1979-2018$	3 hours	0.1°
Downward longwave	CMFD	$1979-2018$	3 hours	0.1°
Air temperature	CMFD	$1979-2018$	3 hours	0.1°
Specific humidity	CMFD	$1979-2018$	3 hours	0.1°
Wind velocity	CMFD	$1979-2018$	3 hours	0.1°
Land surface temperature	MOD11C3	$2001-$ now	Monthly	0.05°
Land surface emissivity	MOD11C3	$2001-$ now	Monthly	0.05°
Height of canopy	GLAS \& SPOT	$2000-$ now	Monthly	0.01°
Albedo	MOD09CMG	$2001-$ now	Daily	0.05°
NDVI	MOD13C2	$2001-$ now	Monthly	0.05°
DEM	ASTER GDEM	-	-	30 m

555
556

558 Table 2: Station information.

Station	Location	Elevation (m)	Land cover
QOMS	$28.21^{\circ} \mathrm{N}, 86.56^{\circ} \mathrm{E}$	4276	Gravel
NAMORS	$30.46^{\circ} \mathrm{N}, 90.59^{\circ} \mathrm{E}$	4730	Grassy marshland
SETORS	$29.77^{\circ} \mathrm{N}, 94.73^{\circ} \mathrm{E}$	3326	Grass land
NADORS	$33.39^{\circ} \mathrm{N}, 79.70^{\circ} \mathrm{E}$	4264	Sparse grass-Gobi
MAWORS	$38.41^{\circ} \mathrm{N}, 75.05^{\circ} \mathrm{E}$	3668	Sparse grass-Gobi
BJ	$31.37^{\circ} \mathrm{N}, 91.90^{\circ} \mathrm{E}$	4509	Sparseness meadow

List of figures

Figure 1: Locations of the six flux tower sites (marked by pentagrams) on the TP. The legend of the color map is elevation above mean sea level in meters.

Figure 2: SEBS-estimated and EC - observed monthly $E T_{a}$ at the six stations (a-f) on the TP in years when the latter observations were available. RMSE is the root-mean-square error, MB is the mean bias, and R is the correlation coefficient. 26 Figure 3: Spatial distribution of the SEBS-estimated multiyear (2001-2018) average annual $E T_{\mathrm{a}}$.27
Figure 4: Spatial distributions of the SEBS-estimated multiyear (2001-2018)average seasonal $E T_{\mathrm{a}}$ (mm/season) values over the TP. (a) spring, (b) summer,(c) autumn, (d) winter.28

Figure 5: Spatial distribution of annual $E T_{a}$ linear trend on the TP from 2001 to 2018. The stippling indicates the trends that pass the t-test ($p<0.05$). 29 Figure 6: Spatial distributions of seasonal $E T_{a}$ linear trends on the TP from 2001 to 2018: (a) annual, (b) spring, (c) summer, (d) autumn, (e) winter. The stippling indicates the trends that pass the t-test $(p<0.05)$.30

Figure 7: Anomalies of the domain-averaged annual $E T_{a}$ of the entire TP, the western TP (lon < $90^{\circ} \mathrm{E}$), and the eastern TP (lon $>90^{\circ} \mathrm{E}$), respectively (a). Domain-averaged seasonal $E T_{a}$ anomalies over the entire TP (b). The dashed straight lines indicate linear trends during 2001-2018, and k is the slope of the straight line. 31 Figure 8: Domain-averaged anomalies of annual $R_{\mathrm{n}}(\mathrm{a})$, precipitation (b), and temperature (c) over the entire TP, the western TP (lon < $90^{\circ} \mathrm{E}$), and the eastern TP (lon $>90^{\circ} \mathrm{E}$), respectively. The dashed straight lines indicate linear trends during 2001-2018, and k is the slope of the straight line. 32

Preprint. Discussion started: 11 January 2021
(c) Author(s) 2021. CC BY 4.0 License.

590

Figure 1: Locations of the six flux tower sites (marked by pentagrams) on the
593 TP. The legend of the color map is elevation above mean sea level in meters.
594

Figure 2: SEBS-estimated and EC-observed monthly $E T_{a}$ at the six stations (a-f) on the TP in years when the latter observations were available. RMSE is the root-mean-square error, MB is the mean bias, and R is the correlation coefficient.
https://doi.org/10.5194/essd-2020-323
Preprint. Discussion started: 11 January 2021
(c) Author(s) 2021. CC BY 4.0 License.

Figure 3: Spatial distribution of the SEBS-estimated multiyear (2001-2018) average annual $E T_{\mathrm{a}}$.
https://doi.org/10.5194/essd-2020-323
Preprint. Discussion started: 11 January 2021
(c) Author(s) 2021. CC BY 4.0 License.

Figure 4: Spatial distributions of the SEBS-estimated multiyear (2001-2018) average seasonal $E T_{a}$ (mm/season) values over the TP. (a) spring, (b) summer, (c) autumn, (d) winter.
https://doi.org/10.5194/essd-2020-323
Preprint. Discussion started: 11 January 2021
(c) Author(s) 2021. CC BY 4.0 License.

613

614
615
Figure 5: Spatial distribution of annual $E T_{\mathrm{a}}$ linear trend on the TP from 2001 to
616 2018. The stippling indicates the trends that pass the t-test ($p<0.05$).
617

Preprint. Discussion started: 11 January 2021
(c) Author(s) 2021. CC BY 4.0 License.

619

Figure 6: Spatial distributions of seasonal $E T_{a}$ linear trends on the TP from 2001 to 2018: (a) annual, (b) spring, (c) summer, (d) autumn, (e) winter. The stippling indicates the trends that pass the t-test $(p<0.05)$.

Figure 7: Anomalies of the domain-averaged annual $E T_{a}$ of the entire TP, the western TP (lon < $90^{\circ} \mathrm{E}$), and the eastern TP (lon $>90^{\circ} \mathrm{E}$), respectively (a). Domain-averaged seasonal $E T_{\mathrm{a}}$ anomalies over the entire TP (b). The dashed straight lines indicate linear trends during 2001-2018, and k is the slope of the straight line.

Figure 8: Domain-averaged anomalies of annual $R_{\mathrm{n}}(\mathrm{a})$, precipitation (b), and temperature (c) over the entire TP, the western $\operatorname{TP}\left(\operatorname{lon}<90^{\circ} \mathrm{E}\right)$, and the eastern TP (Ion > $90^{\circ} \mathrm{E}$), respectively. The dashed straight lines indicate linear trends during 2001-2018, and k is the slope of the straight line.

